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Abstract. A new diagrammatic method, which is a reformulation of Berezinskii’s technique, is constructed
to study the density of electronic states ρ(ε, φ) of a one-channel weakly disordered ring, threaded by an
external magnetic flux. The exact result obtained for the density of states shows an oscillation of ρ(ε, φ)
with a period of the flux quantum φ0 = hc

e
. As the sample length (or the impurity concentration) is

reduced, a transition takes place from the weak localization regime (L � l) to the ballistic one (L ≤ l).
The analytical expression for the density of states shows the exact dependence of ρ(ε, φ) on the ring’s
circumference and on disorder strength for both regimes.

PACS. 71.10.-w Theories and models of many electron systems – 71.20.-b Electron density of states and
band structures of crystalline solids – 71.55.-i Impurity and defect levels – 73.23.-b Mesoscopic systems

The oscillation of physical properties of disordered
metals has been studied intensively after the prediction
of the Aharonov-Bohm effect in doubly connected dirty
systems [1] with the period of half of a flux quantum and
its observation [2] in a Mg cylinder.

Today, a particular subject of intensive investiga-
tion is the persistent current, predicted in [3, 4] for
one-dimensional disordered rings. Recent advances in
microstructure technology facilitate the fabrication of
mesoscopic rings and the observation of thermodynamic
currents therein [5–7]. The observed oscillatory responses
in these experiments, which are consistent with a persis-
tent current, differ in the period of oscillation.

A similar controversy exists also in theory. According
to fundamental physical principles all physical parameters,
in particular the persistent current, of a one-channel metal
ring should be periodic in an applied magnetic flux φ with
period of a flux quantum φ0 = hc

e [3,4,8–10]. However, the
coherent backscattering mechanism with consequent inter-
ference effects in mesoscopic systems gives rise to conduc-
tance oscillations with the halved period φ0/2 [1,11–15]. It
is pertinent to notice that the attempt to explain the φ0/2
oscillation in a disordered ring by taking into account the
electron-electron interaction [15–19] is also based on the
“cooperon” propagation in the system.

All these disputes in the theory seem to be con-
nected with the absence of a consistent theory for a one-
dimensional (1d) disordered ring in a magnetic field which
goes beyond the diffusion approximation and can calculate
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not only average values of the physical parameters but also
mesoscopic fluctuations of these parameters.

It is well known that the physical parameters of a
mesoscopic system with dimension L satisfying the con-
dition l < L � lin (where l is the mean free path and
lin is the length over which the phase coherence of an
electron wave is conserved) have random character, i.e.
self-averaging is violated [20]. At T = 0 all systems be-
come mesoscopic. In this case high moments give a con-
siderable contribution, which results in strong differences
between average value and typical one of the observed pa-
rameter [21], i.e. the average value loses its significance
to characterize the experimental observation. For such a
problem one has to calculate the whole distribution func-
tion and to get the typical value for an observable param-
eter [21, 22].

To perform the procedure presented above there ex-
ist technical difficulties. As far as the Aharonov-Bohm
problem for a sufficiently narrow ring is 1d, the diffusion
approach does not give correct results because of strong
interference effects independent of the degree of random-
ness [23]. The periodicity adds an additional technical
difficulty.

In this paper we present a new diagrammatic technique
by means of which all diagrams can be summed exactly
for weak disorder, when the criterion kFl � 1 (where kF

is the Fermi momentum) is satisfied. This method is a
generalization of the Berezinskii method [24], which was
previously developed for a strictly 1d system.

The latter system with δ-correlated Gaussian impurity
potential was studied a long time ago by Halperin [25].
In difference to our case, Halperin considered the limit
of an infinite density of scatterers, where the Ioffe-Regel
criterion (kFl ≈ 1) is reached. Halperins result describes
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the energy dependence of the density of states (DoS) of
bound states appearing in the impurity tail with negative
energies. The same results for the DoS, together with new
information on the localization length, dielectric constant,
and conductivity, were later obtained in an extension of
Berezinskii’s theory to strong disorder [26,27].

Here, we consider a one-channel metal ring, threaded
by a constant magnetic flux φ through the opening. The
electrons inside the ring with circumference L are elas-
tically scattered through the impurity potential Vimp(x).
The Hamiltonian of the system is written in the form

H =
~2

2m∗
(
i
∂

∂x
+

2π
L

φ

φ0

)2 + Vimp(x) (1)

where x = ϕ L
2π is the spatial variable on the ring, φ0 = hc

e
is the fundamental period of a flux quantum and m∗ is
the effective mass of an electron. The impurity potential
Vimp(x) is considered here to be Gaussian distributed with
a spatial width small enough to justify the Born approxi-
mation. We apply here our new diagrammatic method to
study the DoS at T = 0 according to the expression

ρ(ε, φ;x) = − 1
π

Im〈G+(x, x; ε)〉 (2)

where G+(x, x′; ε) is the retarded Green’s function (GF)
and the bracket means averaging over the impurity
realizations.

Berezinskii’s idea to construct a real space diagram-
matic method in one dimension is based on the factorable
form of the “bare” GF. However, for a 1d problem with
periodic boundary condition, the quantization of the en-
ergy spectrum creates difficulties in this respect. To avoid
these difficulties, the boundary condition is not imposed
at the beginning and we start with a free particle of energy
εk = ~2

2m∗ (k− 2π
L

φ
φ0

)2 and wave function Ψk(x) ∝ exp(ikx)
with continuous k. To implement the periodic boundary
conditions, the particle is allowed to make an arbitrary
number of revolutions around the ring in both directions.
By this means, the “bare” retarded Green’s function in the
coordinate representation can be expressed in factorable
form, as it takes place in the Berezinskii technique [24]

G+
0 (x, x′; ε, φ) =

∫
dk
2π

eik(x−x′)

ε− εk ± iη

=
−i
~v(ε)

exp
(

i2π
φ

φ0

x− x′
L

+ ip(ε)|x− x′| − η

v(ε)
|x− x′|

)
(3)

where the dissipative parameter η characterizes an en-
ergy level broadening due to inelastic scattering, v(ε) and
~p(ε) are the velocity and the momentum of an electron
with energy ε in a strictly 1d system, respectively, with

v(ε) =
√

2ε
m∗ , p(ε) =

√
2m∗ε
~2 . It is worthwhile to note

that the true GF for a clean ring, G̃+
0 , can be obtained

a) b) c)

Fig. 1. The three internal vertices giving an essential contri-
bution to the impurity averaged GF in the weak disorder limit
pFl� 1.

from equation (3) by making allowance for arbitrary rev-
olutions. G̃+

0 (x, x′; ε, φ) can then be expressed in terms of
G+

0 as

G̃+
0 (x, x′; ε, φ) =

∞∑
n=−∞

G+
0 (x, x′ + nL; ε, φ). (4)

We can easily verify according to equations (2-4) that (the
impurity averaging in Eq. (2) of course loses meaning in
this case) the DoS of a clean ring in the presence of an
external magnetic field is

ρ0(ε, φ) = ρ0 + 2ρ0

∞∑
n=1

cos(p(ε)Ln) cos(2π
φ

φ0
n)e
− η
v(ε)Ln

(5)

where the DoS of a strictly 1d system is denoted by ρ0 =
1

πv(ε)~ . In the limit η → 0, the DoS assumes the expected
discrete form.

Now we represent the unaveraged retarded GF
G+(x, x′; ε, φ) of an electron moving in a field of ran-
domly distributed impurities by a continuous line going
from point x to x′. For the DoS problem, G+(x, x; ε, φ)
is adequate. The factorable structure of the “bare” GF
G+

0 (x, x′; ε, φ) between two subsequent scattering points
xi and xi+1 makes it possible to transform the coordinate
dependence from the line to the impurity scattering points
xi, where the impurities are located. For our case of weak
disorder, the diagrams have to be selected taking into ac-
count pFl � 1, where pF is the Fermi momentum and l is
the mean free path. The correlator, connecting two scat-
tering events and depicted in the diagrams as a wavy line,
characterizes the essential vertices shown in Figure 1. The
expressions corresponding to these internal vertices are
a) −

(
1

2l− + 1
2l+

)
, b) − 1

l+ , and c) − 1
l− , respectively, where

l+ and l− are the mean free paths with respect to forward
and backward scattering [27]. The contribution of the ne-
glected vertices vanishes, since they oscillate strongly with
the position [24]. These expressions show that the internal
vertices don’t depend on the magnetic flux φ and the mag-
netic field dependence can be transfered from the internal
vertices to the external ones, which are given in Figure 2.

In difference to two-point correlator problems, the DoS
problem can be described by rather simple diagrams, an
example of which is presented in Figure 3a. It is convenient
to cut the diagrams at point x and straighten the lines to
arrive at the form shown in Figure 3b.
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Fig. 2. The external outgoing (a, d) and incoming (b, c) ver-
tices and the expressions corresponding to them.

Each diagram is characterized by the number of line
pairs m returning to the cutting point x and by the to-
tal number of throughgoing lines n = n+ + n−, where n+

and n− are the numbers of rightgoing and leftgoing lines,
respectively. According to Berezinskii’s method [24], the
sum of all diagrams having m pairs of returning lines and
n throughgoing lines at the cross section x is denoted by
Q0(m,n;x − x′). This block does not contain the contri-
butions of the external incoming and outgoing vertices,
which are included in the final expression as additional
multipliers. Due to the structure of the essential vertices,
the number of loops on the left hand side is identical to
the number of loops on the right hand side and we can
use the common symbol m.

The expression for the average value of the retarded
GF can be written as

〈G+(ε, φ;x, x)〉 =

− i
v(ε)

∞∑
m=0

∞∑
n+=0

∞∑
n−=0

[(m+ n+

m

)(
m− 1 + n−

m− 1

)
+
(
m+ n−

m

)(
m− 1 + n+

m− 1

)
− δm,0δn+,0δn−,0

]
× exp

(
ip(ε)L(n+ + n−)− ηL

v(ε)
(n+ + n−)

− 2πi
φ

φ0
(n+ − n−)

)
Q0(m,n = n+ + n−;L) (6)

where the combinatorical factor in the angular brackets
denotes the different possibilities of ordering the loops and
lines: assuming that the electron starts from the left hand
side, and pursuing the continuity of an electron line for the
GF, the n+ rightgoing lines can be distributed arbitrarily
on the m+ 1 positions before each of the loops on the left
side and directly before the final external vertex. Also, the
n− leftgoing lines can be distributed on the m positions
before the loops on the right side. This gives the first term

x+Lxx

(b)(a)

Fig. 3. (a) A diagram giving a contribution to the DoS. The
radial unfolding of the drawing was done for the sake of clarity.
(b) The same diagram as in (a) after cutting at the point x. It
belongs to the class of diagrams with (m = 1, n+ = 1, n− = 0).

in the angular brackets of equation (6) from

∞∑
{n+
i }=0

δn+,n+
1 +n+

2 +···+n+
m+1

∞∑
{n−i }=0

δn−,n−1 +n−2 +···+n−m =

(
m+ n+

m

)(
m− 1 + n−

m− 1

)
. (7)

Similarly, the electron can also start from the right hand
side. In this case, the left- and rightgoing lines reverse
their role, and this makes the second term in the angular
brackets of (6). However, if there are no loops and no lines,
these two cases can not be distinguished, therefore one has
to include the δ-term in the angular brackets as compen-
sation. The exponential term in equation (6) comes from
the external vertices by taking into consideration the cir-
culations around the ring.

For the final expression for the DoS, we insert
equation (6) into equation (2). After some transformation
of variables we obtain

ρ(ε, φ) = ρ0

∞∑
m=0

∞∑
n=0

n∑
k=0

[
2
(
m+ k

m

)(
m− 1 + n− k

m− 1

)
− δm,0δn,0

]
cos(p(ε)Ln) exp

(
− ηLn

v(ε)

)
× cos(2π

φ

φ0
(2k − n))Q0(m,n;L). (8)

The equation for the central block Q0(m,n;x) is con-
structed by infinitesimal shifting the point x and exam-
ining the change in Q0 due to passing of the individual
impurity lines through x [24,27]. This process is schemat-
ically presented in Figure 4. The numbers of possible in-
sertions of the vertices a) and b) of Figure 1 are (2m+ n)
and 1

2 (2m + n)(2m + n − 1), respectively. The vertex c),
however, can be inserted in two different ways: i) with-
out changing m and n, this can be done in m(m+ n− 1)
different ways (First two blocks in Fig. 4); and ii) with
changing m to m − 1 and n to n + 2 (third block in
Fig. 4). The latter way of insertion has m2 possibilities.
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Fig. 4. Scheme to construct the equation for the central block
Q0(m,n;x)

In total, the equation for Q0 is

d
dx
Q0(m,n;x) =

−
( (2m+ n)2

2l+
+

n

2l−
+
m(m+ n)

l−

)
Q0(m,n;x)

− 1
l−
m2 Q0(m− 1, n+ 2;x) (9)

Q0 satisfies the boundary condition

Q0(m,n;x = 0) = δm,0 (10)

which means the absence of scattering for a ring with an
infinitesimal small circumference.

To solve equation (9), we replace Q0(m,n;x) accord-
ing to

Q0(m,n;x) =

exp
(
− x

2l−
(2m+n)2− x

l−
m(m+n)− x

2l−
n

)
Q̃0(m,n;x).

(11)

By Laplace transforming Q̃0 from the coordinate x to the
new variable λ and by using the boundary condition (10),
the equation for Q0 is reduced to the form

λQ0(m,n;λ)− δm,0 =

− 1
l−
m2 exp

(
xn

l−

)
Q0(m− 1, n+ 2;λ− n

l−
). (12)

Equation (12) can be solved by iteration in m. For m = 0,
Q0(0, n;λ) = 1

λ . Further iteration gives

Q0(m,n;λ) =
(−1)m(m!)2

(l−)m

m∏
j=0

1
λ− 1

l− j(j + n− 1)
·

(13)

Inverse Laplace transform of Q0(m,n;λ) results in

Q0(m,n;L) =

exp
(
− L

2l+
(2m+ n)2 − L

l−
m(m+ n)− L

2l−
n
)

×
m∑
j=0

(−1)j
(
m

j

)
m!(j + n− 2)!

(m+ j + n− 1)!

× (2j + n− 1) exp
( L
l−
j(j + n− 1)

)
(14)

where the exponential prefactor in (11) has been taken
into account. From equation (14) it can be verified that
for L = 0 the sum over j gives Q0(m,n,L = 0) = δm,0
and that Q0 decays exponentially with n for m = 0. Also,
one obtains from (14) in the special case of n = 0

Q0(m,n = 0;L) =

(1−m−m L

l−
)e−

2L
l+
m2− L

l−m
2

+ e−
2L
l+
m2− L

l−m
2− L

4l−

×
m∑
j=2

(−1)j
(
m

j

)
m!(j − 2)!

(m+ j − 1)!
(2j − 1)e

L
4l− (2j−1)2

. (15)

Equations (8) and (14) constitute the exact result for
the DoS of a one-channel weakly disordered ring in an
external magnetic field. The result is valid for weak local-
ization and ballistic regimes.

For the weak localization regime, corresponding to the
criterion L � max{l+, l−}, equations (8) and (14) are
simplified to

ρ(ε, φ) = ρ0

{
1− 2L

l−
exp

(
−2L
l+
− L

l−
− η

v(ε)
L

)}
+2ρ0 exp

(
− L

2l+
− L

2l−
− η

v(ε)
L

){
cos(p(ε)L) cos(2π

φ

φ0
)

+ exp
(
− 3L

2l+
− L

2l−

)
cos(2p(ε)L) cos(4π

φ

φ0
)
}

(16)

which shows that the leading contribution to the DoS os-
cillation has a period of φ0 and its amplitude decreases
exponentially with impurity strength (or with increasing
L) for weak disorder. Such a small contribution of the im-
purity scattering to the DoS is connected with the absence
of “diffusion” and “cooperon” contributions to the aver-
aged Green’s functions. In the limit of an infinite sample,
the correction due to weak disorder disappears completely.
For the ballistic regime, when L ≤ min{l+, l−}, the con-
tribution to the DoS can be approximated in the form

ρ(ε, φ) = ρ0(ε, φ)

− ρ0
L

l+

N+∑
n=0

n2 cos(p(ε)Ln) cos(2π
φ

φ0
n)e−

η
v(ε)Ln

− ρ0
L

l−

N−∑
n=0

n cos(p(ε)Ln) cos(2π
φ

φ0
n)e−

η
v(ε)Ln

− 2ρ0
L

l−

N−∑
n=0

k=n∑
k=0

(k + 1) cos(p(ε)Ln)

× cos(2π
φ

φ0
(2k − n))e−

η
v(ε)Ln (17)

where ρ0(ε, φ) is the DoS of a clean ring given by

equation (5), N+ ≈
[√

2l+

L

]
and N− ≈

[
2l−

L

]
.

From equation (17) it can be seen that disorder
gives a contribution proportional to L

l± to ρ0(ε, φ),
the DoS of a clean system in a magnetic field,
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Fig. 5. Dependence of the DoS on the ring length L for small
rings and zero magnetic field, obtained from equations (8) and
(14). The Fermi momentum is given by pl− = 100. The sharp
discrete levels (Eq. (17)) for small ring length or large scat-
tering length cross over to a continuous DoS for large rings
(Eq. (16)).

ρ0(ε, φ) = ρ0 +2ρ0

∑∞
n=1 cos(p(ε)Ln) cos(2π φ

φ0
n). The de-

pendence of the DoS on the ring circumference L, com-
puted from equations (8) and (14), is given in Figure 5,
where the sharp discrete peaks in the ballistic regime are
due to energy level quantization.

The upper limit N± of the sums in equation (17) may
be a small value, e.g. N± ≈ 1, deduced from l

L = 1.3
according to the experiment in reference [6]. Therefore, the
oscillation with a full flux quantum φ0 will be pronounced
in the ballistic regime.

In the absence of backward scattering (l− = ∞) in
the system, equations (8) and (14) give a rather simple
expression for the DoS, which can be presented in the
following form:

ρ(ε, φ) = ρ0 +
ρ0

2

√
l+

2πL

∫ ∞
−∞

dγ e−
l+
2Lγ

2

×
( 1

exp[−ip(ε)L− i2πφ/φ0 + iγ + η
v(ε)L]− 1

+
1

exp[−ip(ε)L+ i2πφ/φ0 + iγ + η
v(ε)L]− 1

+ c.c.
)
.

(18)

Equation (18) can be physically interpreted as follows:
each act of forward scattering gives rise to coherent shift-
ing of all energy levels. The value of this shifting is random
with Gaussian distributions; the typical value of this shift-

ing is proportional to ~
τ+

√
l+

L where τ+ is the relaxation
time due to forward scattering. Therefore, only backward
scattering seems to be responsible for level repulsion in
disordered 1d systems [28]. Averaging over this random
shifting results in Gaussian broadening of the energy lev-
els, which for the weak localization regime is much smaller
than Dingle broadening and comparable with it in the bal-
listic regime. In the latter case, the transport seems to be
connected with resonant tunneling.

To illustrate the dependence of ρ on l+ and l−, we
decomposed the DoS (Eq. (8)) into the field independent
part with the restriction ∆n = |n+ − n−| = 0, and the
harmonics with ∆n = 1, 2 . . . For l+ = l− and for l+ =∞
we show these contributions in Figure 6 as functions of
the ring length. For l− = ∞, the field independent part
is constant and the higher harmonics are simple damped
oscillations.

It is necessary to notice that the oscillative behavior of
a persistent current will differ from that obtained for the
DoS. In contrary to the dynamical approach to the study
of conductance, as a result of which the latter is connected
with a current-current correlator, the average thermody-
namic current 〈I(φ)〉 is defined by the average value of the
thermodynamic potential F according to 〈I(φ)〉 = −c∂〈F 〉∂φ

where the bracket denotes an averaging over the impurity
realizations.

At zero temperature the last expression turns to
〈I(φ)〉 = −c∂〈E〉∂φ with E =

∫ µ(φ)

0 dε ερ(ε, φ) being the to-
tal energy of the particles. Expressing DoS ρ(ε, φ) and the
flux dependent Fermi energy µ(φ) as ρ = 〈ρ〉 + δρ and
µ = 〈µ〉 + δµ where 〈δρ〉 = 〈δµ〉 = 0 and using in ad-
dition the particle number conservation N = const =∫ µ(φ)

0 dε ρ(ε, φ) to determine δµ, 〈E〉 can be written in the
following form:

〈E〉 =
∫ µ0

0

dε ε〈ρ(ε, φ)〉 − µ0

〈ρ〉

∫ µ0

0

dε 〈δρ(ε, φ)δρ(µ0, φ)〉

+
1

2〈ρ〉

[
1 +

µ0

〈ρ〉
∂〈ρ(µ0, φ)〉

∂µ0

]
×
∫ µ0

0

dε1
∫ µ0

0

dε2 〈δρ(ε1, φ)δρ(ε2, φ)〉. (19)

As it is seen from this expression, contributions to the
persistent current are given not only by the average value
of the DoS but also by the correlator 〈δρδρ〉. By expressing
the DoS as a difference of the retarded (G+) and advanced
(G−) Green’s functions, the latter correlator is shown to
be dominated by 〈G+G−〉. Characterizing the retarded
(advanced) Green’s function by the number of line pairs
m (m) and by the total number of throughgoing lines n =
n++n− (n = n++n−), the oscillating factors in the kernel
for the correlator 〈G+G−〉 will have the form (compare
with Eq. (8)) cos(p(ε)L(n−n)) cos(2π φ

φ0
(n+−n−+n+−

n−)). The main contribution to the correlator comes from
the terms with n = n, which oscillate with the halved
period [29].

The explanation presented above for the φ0
2 -periodicity

of 〈I(φ)〉 is connected with the transition from the grand
canonical ensemble averaging to the canonical one [8, 11,
12,17,18,30]. Another consideration also seems to be per-
tinent. For a mesoscopic system the total energy E at
T = 0 is a random parameter. For a fixed chemical po-
tential in the system the number of levels fluctuates from
sample to sample. An external magnetic field will peri-
odically change these fluctuations. The correct approach
to the problem is to find the distribution function of E,
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Fig. 6. The field independent (∆n = 0) part of the DoS for l+ = l− (l.h.s) and for l+ = ∞ (r.h.s); and pl− = 50. The insets
show the ∆n = 1 contributions. Higher oscillations (∆n > 1) are similar, but with increased damping.

which seems to be the same as the one for the DoS,
and to calculate the typical value of E by means of av-
eraging. Such averaging will include not only 〈ρ〉 but also
higher moment correlators.

The method presented in this paper makes it possible
to calculate all these moments of the DoS [29], as it was
done in [22] for a strictly 1d system. Further, the extention
to correlators of the local DoS with different energies and
different positions allows to study level repulsion.

In conclusion, we have presented a new diagrammatic
method which gives an exact result for a one-channel
weakly disordered ring threaded by a magnetic flux φ.
As an application of the method the DoS of an Aharonov-
Bohm ring in the absence of electron-electron interaction
is calculated. The result obtained gives an exact depen-
dence of the DoS on the parameters φ, ε, L and l±.

We are thankful for useful discussions with V.N. Prigodin in
the early stage of this work. This work was supported by the
SFB410.
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